Every time I need to do something in R it nearly always means I have to do a Google search or trawl my previous code to see how I did it before. Here I am going to post some snippets of code - mainly for my own use so that I know where to find them. Much of this code will be 'borrowed' and probably not the most efficient (I like to write code the long way so I can follow what is going on) - but it seems to work. If anyone finds it doesn't work or there is a more efficient way then please let me know.
1. Randomly sampling data into a train and test set
totalrecords <- nrow(mydata)
trainfraction = 0.7
trainrecords = as.integer(totalrecords * trainfraction)
allrows <- 1:totalrecords
trainrows <- sample(totalrecords,trainrecords)
testrows <- allrows[-trainrows]
#check
length(trainrows)
length(testrows)
#then build model, something like...
model <- lm(theFormula, data=mydata[trainrows,])
1a. Randomly sampling data into a train and test set
Thanks to Isamoor
trainrows <- runif(nrow(mydata)) > 0.7
testrows <- !trainrows
2. Repeated n fold cross validation
This is to generate a cross-validation set, useful when wanting to know the expected error or for generating a set to use for getting ensemble weightings.
1. Randomly sampling data into a train and test set
totalrecords <- nrow(mydata)
trainfraction = 0.7
trainrecords = as.integer(totalrecords * trainfraction)
allrows <- 1:totalrecords
trainrows <- sample(totalrecords,trainrecords)
testrows <- allrows[-trainrows]
#check
length(trainrows)
length(testrows)
#then build model, something like...
model <- lm(theFormula, data=mydata[trainrows,])
1a. Randomly sampling data into a train and test set
Thanks to Isamoor
trainrows <- runif(nrow(mydata)) > 0.7
testrows <- !trainrows
2. Repeated n fold cross validation
This is to generate a cross-validation set, useful when wanting to know the expected error or for generating a set to use for getting ensemble weightings.
###################################### # the error function calc_RMSE <- function(act,pred){ aact <- as.matrix(act) ppred <- as.matrix(pred) if(nrow(aact) == nrow(ppred)){ return (sqrt(sum(((ppred) - (aact)) ^ 2) / nrow(aact))) } else { return (-99) } } ##################################### ########################### #Load and prepare data ########################### databuild <- iris datascore <- iris #put real score set here #target - what we are predicting theTarget <- 'Sepal.Length' #set the formula theFormula <- as.formula(paste(theTarget," ~ . ")) #find the position of the target targindex <- which(names(databuild)==theTarget) #actuals build_actuals <- databuild[,targindex] ####################################### #vectors to score the model outputs ####################################### buildcases <- nrow(databuild) scorecases <- nrow(datascore) pred_train <- vector(length=buildcases) pred_test <- vector(length=buildcases) pred_score <- vector(length=scorecases) pred_trainLoop <- vector(length=buildcases) pred_testLoop <- vector(length=buildcases) pred_scoreLoop <- vector(length=scorecases) #settings numloops <- 300 numfolds <- 10 test_errors <- vector(length=numloops) train_errors <- vector(length=numloops) pred_testLoop <- 0 pred_trainLoop <- 0 pred_scoreLoop <- 0 modtype = 'linear regression' ##################################### # now the work ##################################### for(loop in 1:numloops){ # generate the indicies for each fold id <- sample(rep(seq_len(numfolds), length.out=buildcases)) # lapply over them: indicies <- lapply(seq_len(numfolds), function(a) list( test = which(id==a), train = which(id!=a) )) #reset the predictions for this loop pred_train <- 0 pred_test <- 0 pred_score <- 0 for(fold in 1:numfolds){ #set the cases for this fold rows_train <- indicies[[fold]]$train rows_test <- indicies[[fold]]$test #build the models - use any model model <- lm(theFormula, data=databuild[rows_train,]) #score up the model buildPred <- predict(model, databuild, type="response") scorepred <- predict(model, datascore, type="response") #now score the cv and scoring predictions z <- buildPred z[rows_test] <- 0 pred_train <- pred_train + z pred_test[rows_test] <- buildPred[rows_test] pred_score <- pred_score + scorepred } #next fold #average the predictions on the train set pred_train <- pred_train / (numfolds - 1) pred_score <- pred_score / numfolds #add to previous loop results pred_trainLoop <- pred_trainLoop + pred_train pred_testLoop <- pred_testLoop + pred_test pred_scoreLoop <- pred_scoreLoop + pred_score #calculate the errors train_errors[loop] <- calc_RMSE(build_actuals,pred_trainLoop / loop) test_errors[loop] <- calc_RMSE(build_actuals,pred_testLoop / loop) #report cat("\nloop = ",loop,"train error = ",train_errors[loop],"cv error = ",test_errors[loop]) #plot a chart as we go if(loop>1){ plot(test_errors[1:loop],col='blue',type='l',main = paste(modtype,numloops,'by',numfolds,'-fold cross validation'), xlab = 'Repetitions', ylab = 'RMSE',ylim = range(rbind(test_errors[1:loop],train_errors[1:loop]))) abline(h=test_errors[loop],col='blue') points(train_errors[1:loop],type='l',col='red') abline(h=train_errors[loop],col='red') legend('top',c('test','train'),col=c('blue','red'),lty=1) } } #loop ######################## #the cross validation predictions and scoring set predictions #this is what we are after cvPredictions <- pred_testLoop / numloops scPredictions <- pred_scoreLoop / numloops #plot should show decreasing test error with increasing train error plot(train_errors,test_errors,type='p')